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A. Dotan W.S. Hodgkiss G.L Edmonds and J.C. Nickles

Marine Physical Laboratory
Scripps Institute of Occanography
San Diego, CA 92152

ABSTRACT

An experiment was conducted on 1o March 1989 as part of a pro-
ject investgadng the design of an acoustic communication link between a
Swallow float and a sonobuoy. The objective of the experiment was to
measure the transmission characteristics of the acoustic channel at high
frequency (10 to 20 kHz), including the nature of fading and multipath.
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I Introduction

An experiment was conducted on 16 March 1989 as part of a project investi-
gating the design of an acoustic communication link between a Swallow float and «
sonobuoy. The experiment was Iccated at 32°40‘N and 117°35.6'W. During the experi-

ment, the sea state was between zero and one and the wind speed was between 5 and

12 knots.

The objective of the experiment was to measure the transmission characteris-
tics of the acoustic channel at high frequency (10 to 20 kHz), including the nature of

tfading and multipath.

II Experiment Concept.

The experiment plan was to transmit a set of waveforms from a transducer
deployed deep in the ocean from a ship (R/V SPROUL) and receive the transmitted
signal with four sonobuoys located 1 km apart and transmitting the received signal via
a RF link back to the ship (see Figures 2.1 and 2.2). The transmitted and the received
signals (from the sonobuoys) were recorded simultanously. In addition, a monitor
hydrophone was deployed close to the projector and provided a replica of the

waveforms which were transmitted through the water.

Figure 2.1 and Figure 2.2 show a schematic diagram of the experiment set up.
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As a projector, we used a Sparton model 6130 free flooded ring transducer which
rransmitted a signal of source level of 182 DB/1uPa @ 1m. As receivers, we used the

AN/SSQ-57 sonobuoys with frequency response shown in Figure 2.3.
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[1.1 Signal set

(1)

Three sets of waveforms wers transmitted:

Discrete frequency pulses. A sequence of 16 pulses centered at 9 to 16.5 kHz.
with 500 Hz separation was transmitted. The time interval between the pulses
was 1 sec. Two sets of pulses were transmitted: (a) 2 msec (defined as set No.

1.1) and (b) 0.25 msec length (defined as set No. 1.2).

Chirp waveform Two sets of chirp waveforms were transmitted: (a) 2 msec up
chirp pulse centered at 15 kHz and 10 kHz bandwidth was transmitted every
second ( defined as set No. 2.1) and (b) A train of 2 msec chirp pulses centered

at 15 KHz and with 10 Khz bandwidth (defined as set No. 2.2)

Two tones selected randomly. Two tones at 12 and 13 kHz were selected by a
pseudo random sequence (PRN). The switching period was varied from 1 to
100 msec. Table 1 summarizes the switching period and the corresponding

PRN sequences.




Switching Period | PRN Seq. Length | PRN Seq. length

msec bits sec

1 8191 8.2

2 4095 8.2

5 2047 10.2

10 1023 10.2

20 511 10.2

50 255 12.8

100 127 12.7

Table 1. Switching period and PRN sequence length.

I1.2 Measuring setup

Figure 2.4 gives a schematic block diagram of the measuring setup used in the experi-

ment.
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Figure 2.4, Measuring setup.
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The right hand side of the block diagram describes the wave form generator, power
amplifier, and transmitted signal monitoring. The left hand side describes the receiv-
ing part inctuding the 4 channel FM receiver, GOES clock, Honeywell 101 tape
recorder, and received signal monitoring. Table 2 describes the signals that were

recorded on each of the Honeywell tape recorder channels

Signal From Recorded on Channel #

sonobuoy # 1

sonobouy # 2

sonobouy # 3

sonc bouy # 4

monitor hydrophotie

O\‘Lﬂ-&wl\)r—-

synthesized wavetorm

Table 2. The content of each channel of the tape recorder.

The receiving system was calibrated such that for channels 1-4, cn input signal
leve! to the sonobuoy of 106 dB reluPa@440Hz corresponds to 0.51 Vrms at the tape
recorder reproducing output. For channel 5, input signal level to the hydrophone of 106
dB reluPa@440Hz corresponds to 1.414 Vrms at the tape recorder reproducing output.

For the calibration at other frequencies, see SSQ-57 frequency response (Figure 2.3)

Figufe 2.5 shows the setup that was used for digitizing the analog recorded

data and storing it on Exabyte tapes.
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Figure 2.5. Digitizing setup.

The digitizer was calibrated such that 1 volt at the output of the tape recorder
corresponds to 1 volts at the input to the anlog to digital converter (ADC). Figure 2.6

gives the frequency response of the antialaising filter that was used.
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Figure 2.6. Antialaising filter frequency response.

11.3 XBT measurements

Expendable bathythermograph (XBT) measurment was made from the R/V
SPROUL at the begining of the experiment. The Sippican mode! T-4 XBT was used.
This temperature measurement along with historical salinity data archived by the
National Oceanographic Data Center! was used with an equation relating temperature.
salinity and depth to sound speed2 Figure 2.7 shows the sound speed profile as calcu-

lated from the XBT data.
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Figure 2.7. XBT sound speed profile.

Figure 2.8 compares the sound speed profile calculated from the XBT data

sound profile based on historical data.
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Figure 2.8. XBT sound speed profile compared with historical data.
I1.4 Log summary
In this section, two lists are enclosed. The first is the experiment log as was

written in the log book during the experiment and the second is the contents of each of

the digital tapes.




I1.4.1 Experiment log

13:11

13:25

13:39

13:49

14:07

14:27

14:46

14:47

15:12

16 March, 1989 Acoustic Modem Experiment No. 1, (R/G SPROUL)

Arriving on station.

Taking XBT at 32°40.00N 117°36.15'W.

Deploy buoy 18 at 32939.88'N 117°36.54'W.

Buoy 18 appears to be buoy 2 on receiver (channel 1).
Buoy No 2 deployed at 32°%40.7¥ 117°36.82'W.

Buoy No 4 deployed at 32%40.92N 117°37.23'W.

Buoy No 6 deployed at 32°41.11'N 117°37.62'W.

Buoy No 15 deployed at 32%41.14N 117°37.90'W.

Deploy the source at 32°%41.86N 117°39.00'W.

32%41.86N 117°39.00W. The source is at depth of 314 m,

the monitor hydrophone at 33 m

Start recording at 32°41.46N 117°38.98W.
Adding 20 dB gain in Clevite ( 142 dB sensitivity instead of 162 dB)

Freighter 3 miles to port.

Adjusting channels 1-4 on Honeywell 101 for 0.5 V r.m.s instead of 1.414.

Channels 5-6 adjusted for 1.414 V.

15:14:12  Start transmitting 2 ms pings at 32°41.41'N 117°38.96 W.

( ft counter on the tape recorder = 0).




15:27:23

15:31:25

15:33:10

15:34:29

153:36:35

15:43:25

16:04:42

16:06:03

16:14:03

16:24:03

16:34:15

16:41

16:50:32

16:55:15

16:56:30

17:01:59

17:06:30

17:16:07

—
{49

Begin 0.25 msec pings ( ft counter = 1995).
Took 20 dB out of Clevite ( ft counter = 2680 ).
Put 20 dB in Clevite ( ft counter = 2900 ).
Begin transmitting PRN ( ft counter = 3028 ).
Switch transmit power level down 10 dB ( ft counter = 3375).
Stop ( ft counter = 4374 ).
Reduce transmitting power 10 dB.
Second tape is installed.
Begin 2 ms pings 32%1.12N 117°39.08W. ( ft counter =0 ).
100 V p-p at the secondary of the drive transformer
Begin transmitting 0.25 msec pulses ( ft counter = 1250).
Begin transmitting PRN ( ft counter = 2703 ).
Stop ( ft counter = 42368).
Third tape is installed.
Increase power to maximum, Clevite 0 dB gain.
600 V p-p at the secondary of the drive transformer.
Begin transmitting 2 ms pulses. ( ft counter =0 ).
20 dB gain is added to the Clevite.
Begin transmitting 0.25 msec pulses ( ft counter = 895 ).
Begin transmitting PRN ( ft counter = 1650 ).
Stop.

Set up FM Chirp 10-20 kHz 2 msec duration, with repetition rate of 1 sec.

Begin transmitting chirp pulses ( ft counter = 2399 ).




14

17:21 32%41.15N 117°39.43'W.

10 dB down in transmitting power.( ft counter = 3145 ).
17:26 Fnd.
17:29:24  Begin transmitting continuous chirps ( ft counter = 3909).
17:33 End ( ft counter = 3909).

18:18 Head home.

I1.4.2 Contents of digital tapes

The digitized data has been archieved in SIO data file format. Each tape con-

tains 14 files, 2 min long each. The enclosed list gives the starting time of each file.

.....................
.....................

(075 15:14:12.000000 Begin 2 ms. pulses
075 15:16:12.000000 2 ms. pulses
075 15:18:12.000000 2 ms. pulses
075 15:20:12.000000 2 ms. pulses
075 15:22:12.000000 2 ms. pulses
075 15:24:12.000000 2 ms. pulses
075 15:27:23.000000 Begin .25 ms. pulses
075 15:29:23.000000 .25 ms. pulses
075 15:31:23.000000 .25 ms. pulses
075 15:34:29.000000 Begin PRN

075 15:36:29.000000 PRN




075 15:38:29.000000  PRN
075 15:40:29.000000 PRN
075 15:42:29.000000  PRN

075 16:06:03.000000 Begin 2 ms. pulses
075 16:08:03.000000 2 ms. pulses
075 16:10:03.000000 2 ms. pulses
075 16:12:03.000000 2 ms. pulses
075 16:14:03.000000 Begin .25 ms. pulses
075 16:16:03.000000 .25 ms. pulses
075 16:18:03.000000 .25 ms. pulses
075 16:20:03.000000 .25 ms. pulses
075 16:22:03.000000 .25 ms. pulses
075 16:24:03.000000 Begin PRN

075 16:26:03.000000 PRN

075 16:28:23.000000 PRN

075 16:30:23.000000 PRN

075 16:32:23.000000  PRN

075 16:50:32.100000 Begin 2 ms. pulses
075 16:52:32.100000 2 ms. pulses

075 16:54:32.100000 2 ms. pulses

075 16:56:32.100000 Begin .25 ms. pulses

15
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075 16:58:32.100000 .25 ms. pulses

075 17:01:59.100000 Begin PRN

075 17:03:59.1C2000  PRN

075 17:16:07.100000 Begin FM chirp

075 17:18:07.100000  FM chirp

075 17:20:07.100000  FM chirp

075 17:22:07.100000  FM chirp

075 17:24:07.100000  FM chirp

075 17:29:34.100000 Begin continuous chirp
075 17:31:34.100000  Continuous chirp

III Data analysis

HI.1 Signal presentation

Figures 3.1 and 3.2 show the power specra of a sequence of 28 2msec pulses (set No.
1.1). The spectra of the synthesized waveforms are shown in Figure 3.1 and the spec-
tra of the received pulses as were received in hydrophone No 4 is shown in Figure 3.2.
The received direct signal and the first multipath signal of each of the pulses as

received in hydrophone No 4 is shown in Figure 3.3.

Figure 3.4 shows one of the synthesized 2 msec chirp waveform (set No 2.1).
Figures 3.5 and 3.6 show one of the received chirp pulses as received by sonobuoys No
2 and No 4. These two Figures show time record of 1 second. The received direct sig-
nal, and the first three multipath signals are clearly seen in the Figures. Comparing Fig-
ures 3.5 and 3.6 shows a big different in the multipath pattern which leads to the con-

clusion that the channel character depends also on the location of the transmitter and
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the receiver, and the distance between them.

The chirp transmitted pulses were received by all four sonobuoys. Figures
3.7-3.34 and 3.35-3.62 show the recieved direct path signal and the first multipath sig-
nal of a group of 28 2 msec chirp signals. Figures 3.7-3.34 correspond to sonobuoy No
2 and Figures 3.35-3.62 correspond to sonobuoy No 4.
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Figure 3.1. The spectra of the synthesized 28 2 msec tone pulses .
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Figure 3.2. The spectra of the 28 2 msec tone pulses recieved at sonobuoy No 4.
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Figure 3.3. The synthesized 2 msec chirp waveform.
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Figure 3.4. The direct signal aud the first multipath of the 28 2msec tone pulses
as received by sonobuoy No 4.
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Figure 3.6. The 2 msec chirp waveform as received by
sonobuoy No 4.
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Figure 3.7-3.34. The direct signal and the first multipath of the 28 2msec chirps
as received by sonobuoy No 2.
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Figure 3.35-3.62. The direct signal and the first multipath of the 28 2msec chirps
as received by sonobuoy No 4.
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II1.2 The channel multipath characteristics

The waveforms that are received by the sonobuoys are distorted replicas of the
transmitted signal plus many other delayed replicas that result from the multipaths (see
Figures 2.4 and 2.5). Figure 3.63 shows is a ray trace based on the sound speed profile,
and the location of the receiver and the transmitter. This program calculates the ray

traces, the time delay between the rays and the attenuation of each of the paths.
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Figure 3.63.
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Table 3.1 gives the transmission loss (TL) and the time delay of each of the paths as

calculated by the ray tracing program.

Ray No. TD TL
Sec dB
1 2.5261 | -84.6
2 25321 | -82.6
3 2.5322 1 -79.
4 2.5334 | -85S.
5 277856 | -91
6 .8638 | -92
7 29974 | -93

* TD = Time Delay

* TL = Transmission loss

Table 3.1. Ray delay and transmission loss.

The multipath characteristic of the channel are calculated in two different
ways. The first is based on inverse Fourier-transforming the ratio of the received and
the transmitted chirp waveform spectra. The second is by correlating the received and
the transmitted waveforms and envelope-detecting the result. Figures 3.64-3.67 show

the multipath character as calculated by using the correlation method.

The channel multipaths characteristics can be considered as two phenomena.
The first consists of the major paths (macro-multipath) caused by reflections from
ocean surface und bottom. The second consists of micro-multipaths. The micro-
multipaths are due to microstructure in the ocean and are a collection of many closly

spaced paths centered around each of the macro-multipaths.
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Figure 3.64 shows the the direct path and the first multipath of 28 pulses as received by
sonobuoy No 2. Figure 3.65 gives the second and Figure 3.66 the third multipath. Fig-

ure 3.67 gives the first three multipaths as were recorded from sonobuoy No 4.

Typically, the channel multipath characteristics are characterized by the
received direct path being much weaker than the signal received from the first mul-
tipath (caused by reflection from the sea surface) (see Figure 3.64). The other mul-
tipaths having larger delay are caused by reflection from the sea bottom or from multi-

ple reflections (bottom and surface) and are much weaker than the first multipath (Fig-

ure 3.65 and 3.66).

The underwater acoustic channel is a time-varying channel and hence, the
channel multipath character also varies with time. This phenomena is well seen in Fig-
ures 3.64-3.67.

Careful inspection of the first 20 msec (Figure 3.64) shows not only that the multipath
intensity changes with time but that the multipaths die and rebuild over a long observa-

tion time.
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Figure 3.64. The channel character of the direct signal and the first multipath of

the 28 2msec chirps as were received by sonobuoy No 2.




85

=
TIME (Se)

:Zt'sc

16

Normalized Magnitude (Linear)

AV
o)

=0

284 286 288 290 292 2
TIME (msec)

Figure 3.65. The channel character of the second multipath of the 28 2msec chirps
as were received by sonobuoy No 2.




86

P\ N
S
A
1
O
P e
AN,
St N\

1<z

O
~
~ Q
Q
<D

Amror,
4 (8]
et o =
T
A\

6

Normolized Magnitude (Linear)

8.9
W
(&%,
o

338 340 342
TIME (msec)

o
348

Figure 3.66. The channel character of the third multipath of the 28 2msec chirps

as were received by sonobuoy No 2.
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Figure 3.67. The channel character of the direct signal and the first two multipaths of
the 28 2Zmsec chirps as were received by sonobuoy No 4.




88

IV Discussion of results

The results of the first of a set of three experiments is analyzed here. In order
to be able to characterize the nature of the ocean as an underwater communication
channel, some carefully selected different waveforms were transmitted through the
water. The received signals were analyzed to provide a preliminary idea of the nature
of the channel. From the figures, we can clearly see that the ocean is a channel which
suffers from very strong multipaths caused by reflection from the sea surface and the
bottom. At times, one of the multipaths signals is stronger then the direct path (see Fig-
ure 3.64). Carefull inspection of the recieved signals ( Figures 3.7-3.34 and Figures
3.35-3.62) shows that the channel is a time-varying channel. Moreover, comparing the
received signals at different sonobuoys shows that the channel character is not only

time-varying but also spatially dependent.
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